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In this paper we concentrate on the case e =
dynamical equation may be simplified to some e
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I0) Is1(e, e, n) = J (t + ecos il,-2lL + (e - e)cas rpl

0

Integration ovet e describes the angle averaging a
Coefficients of the equation (1) depend on e = e(u = Iand the power index n, which is assumed to be indeper
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Further this approach is not appropriate to o
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AIrlAe - @ + I)(e - e)-t\ - (n + t)(e - q-'

The recunence dependence for the derivatives of 12,

(15) OIolOe=le (7 - e\l-ti B -2(n- I)e21Is_+ (n

(t6) OIolOe- (n + t)a-t( Io* - Io.).
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still an open

References

1. L y u b ark i j, Yu. E., K. A. P o s tn o v, M. E, pro kh or o v
Royal Asrron. Society,266, 1994,593 - 596.

accretion discs, Monthly Not.

Dimitlo v, D. V. Elliptical accretion discs with constant II. Standard a-disc model,
Aerospace Research in Bulgaria, 1999, No.15, 11-21.

EAHO Bb3MOXHO OIIPOCT.flBAHE HA HAMI4qHO:tO
yPABHEHI,IE, 3AAABAIUO EBOJITO AHA

E JII4IITI4qHI4TE AKPE UII OHHI4 CKOBE

,{uuumrp fuuumpoe

Fegronae

an analytical solution to the simplified equation
question, which is under investigation.

llor<asauo e, qe rpr4 AorrycKaHero Ha 3aKoH
q = PZ ', lrHlerpaJrnTe, BKrrotreHr4 B ypaBH

eKcn o H eHrlr4aJrHr4 QyHKrIr4 14 OT eKCrIeHTp Id[JI1lT eT A e,

= 0e/0(ln p) cnprMo Sora-unux napaMerbp p rr or

AI4HaMr.rqHoTo Ar4QepeHrlr{aJrHo ypaBHeHr4e oT

IorrycKa 
^a 

ce r436efHe qvcJreHoTo orleH,fl
eBeHTyaJrHO O6yclaBr rro-cTa6LUIHa Vifilr]uloJrr.{TeJr

pa3fnelKAaHe Ha 3AI.AqATA e OrpaHr4rreHo Ao crlwafl.,
napaMeTbpa n He ca rleJrz rlvcra.
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