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Abstract

It is shown that, under the assumption of the viscosity law|y = 2", the integrals
involved in the equation describing the dynamics of the disc, may be replaced by
polynomials and exponential Junctions of the eccentricity e, its derivative é = da/d(in p)
with respect to the focal parameter p, and the power index n. This transformation is useful
for numerical solving of the dynamical second-order differential equation, because it
avoids numerical evaluation of the integrals and, possibly, contributes ta a more stable
computational procedure. Our consideration of the problem is limited to the case when the
values of the parameter n are not integers.

Obscrvations and theoretical studies give evidences that the
accretion discs around compact objects (in the Newtonian approach) arc not
only circular in shape, but may also have elongated structure. In the later
casc it is possible the eccentricity e of the particle orbits to vary with the
focal parameter p (¢ = e(p)); c.g., the outer parts of the disc are more
clongated than the inner ones. We shail consider smooth accretion discs in
the sense that the possible spiral structures into the disc are not taken into
account. The present paper is based on the theory of elliptical accretion
discs developed by Lyuobarskij et al. [17 and in what follows we shall usc
their approach and notations. These authors have obtained the dynamical
cquation governing the motion of particles alone elliptical streamlines and
determining the functional dependence e = ep) for a priorl  assumed
viscosity law 5 = X", Here n is the viscosity coefficient, 5 = 2p) is the
disc surface density, B and n are parameters independent of p. They have
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also solved this equation (using numerical methods) for some values of the
power index n.

The case of constant eccentricity e (when ¢ does not depend on p and
azimuthal angle ¢ for all points of the accretion disc) is a particular case of
the set of solutions of the dynamical equation. It was treated in details in [2].
In this paper we concenirate on the case ¢ = ¢(p} and show that the
dynamical equation may be simplified to some extend, avording numerical
computation of the integrals involved in it. Following Lyubarskij et al. [1],
we infroduce a new variable u = Iz p and write e = e(u ) instead of ¢ = ¢{p).
Correspondingly, we denote by ¢ the derivative ¢ = de/du. The streamlines _
of the fluid particles are described by the equation [1]:

() (Y (9ZIoe)-Z(0Y/0¢) 1 é + [ Y (82/0e) - 7.(OYIde) - Yie]lé +
YI@/IOW-Z -(U2X1-eHY =0

In the above equation the auxiliary functions Y, Z and W (angle averaging
with respect to ¢ has already been performed) are represented by the
relations:

) 3Y(e, ¢, n) = (I 2m)(p/GM) " 213G+ +2e8)]y + (Te + & - deé -
2¢° al, + (4e” - ez ],

(3) 32(e ¢, n) = (1 2m)(p/GM) 721 B+ ¢ - 2ee + 2e Oy + (13e + .’2e +
4e 6e%e - 2¢* el + (226 + 2¢* - 12¢6 - 4¢° &l + (16€° - 12¢* €}z
+ (4e -4¢° 4],

4) 9W(e é, n) = {1/ ZE)(prM) M2y (9 2¢° + ¢ + 4ee de’e + 8% +
4ee)lg +(33e 26 + ¢ -24e+4ee 483-!-863 +4ee)I;+(4Se
- T2e¢ + 8N, + (326 - T26% + 24V + (8e” - 240% + 16625A)L ] .

In such a way, at the very beginning of the problem for finding the
dependence e = ¢(p) by solving the dynamical equation (1), there arises a
difficulty due to the inevitable appearance of 7 integrals defined as:

2n

(5) e, 4, m) =] cost ¢ (1 + ecos 9)™2[1 + (e - é)cos g1 do ,
6]

k=0,1,...,4,
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2n
6) Iyle, ¢, n)= ,[ (1 +ecos 9)" {1 + (e - &)cos wl " dp,
: 0

2n

D Toe, éon) =] (1 +ecos )" [1 + (¢ - &)cos g] T do .
0

Integration over ¢ describes the angle averaging along the streamlines.
Coefficients of the equation (1) depend on e = e(u = np),é=eéeu=Inp)
and the power index n, which is assumed to be independent of p and ¢. The
above Integrals (5) - (7) are considered for values of e(u) and é(u) which
satisfy the restriction le - él < 1, 30 no stngularities arise during the
integration. This requirement is connected to the condition that the metric in
the curvilinear coordinates {p, 9) must be nonsingular and self-adjoint orbits
do not intersect. Finding the solution of equation (1) is complicated by the
fact that the unknown function e{u} and its derivative é(u) enter into the
integrands of (5) - (7). Substituting expressions (2) - (7)|into the dynamical
equation (1), describing the structure of the stationary accretion disc, leads
to the following general form of this equation:

(8  lAx(e,é,n)é+ Bixle, &, n)] Ii (e, ¢, nil(e, é, ny = 0, where the sum
is overiand k (i, k = 0-, 0+ 0, 1,..., 4}, and i is less or equal to k.

Functions Ay and By, are polynomials in e, é and #. ]ln the present paper
we show that the integrals (5) - (7} can also be expressed as polynomials
and exponential functions of ¢, ¢ and n, avoiding in such a way the
numerical integrations during the procedure of numerical solution of (8),

Using the identities 1 = cos? g+sin‘p, 1= (I +ecos p)-ecos g, 1 =11
+{e-¢é)cos o ]~ (e - é)cos ¢ and integrating by parts, we can find relations
which enable us to eliminate (in principle) the integrals I, I, I; and Ip. For
¢xample, for the first two integrals we have: '

@) (e-&ele=(n-2¢(e" - e To. - (n - 2)e(e - e I
*2e+(n-2)é(e*- De I 1 + (1- e ™, - [Be + (n - 26 I,

(0)  (e- el =[3e+ (n-2)¢ Il + [2¢* - 3¢* + (2 + d)ee - 4ee + (n -

2)¢* + 26 x[(e - el My + (n - 2)(e - ) - De o + (n + De(l - & +
2eé- e -6) "y, .
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Further this approach is not appropriate to obtain solutions for I (e, é,
) and Ip.{e, ¢, n), because another integrals (different from the system of
the 7 integrals (5) - (7) must be involved; i.e., chiminating Ip. and Iy, , we
would introduce new unknown integrals. It is reasonable then to usc the
derivatives of these integrals with respect to e and ¢, Here we consider ¢, ¢
and n as independent variables, because the analytical solutions e = e(u) and
é = é(u) are so far unknown for us. We shall write the cxpressions for some
of thesc derivatives:

(11) Oly/de = (n-2)e - (n-2e T+ (n+ 1)(e-6) Toy - (n +1)(e - &)™
(12)  dlglde=(n+1)e-¢)"'Ty-(n+ (e-¢é) 'Ly

(13)  Olfbe=(n-20e™Mi-(n-2eTo+(n-2)e 2Ty - (n + 1)e - &),
+(n+1)e-6)2lh-(+ 1) e-6) o,

(14)  ofde=m+1e-&) ' h-(n+1Me-&) ly+m+ De-&) 2 1y,
elc,

The recurrence dependence for the derivatives of I, Is and Iy is obvious.
(15) Olpfde={e{l -] {[3-2n- 1)’ .+ (n + )2 - e&)oy - 3L } ,
(16) Olgfoé=(n+ 1)e ' (I, -1p.).

For 0ly,/0e and 01y,/0¢ we also have a linear dependence on I, Io. and
Iy.; for brevity we shall not write it here in an explicit form. For example,
differentiating with respect to ¢ and ¢ the linear relation between Tole, &, n) ,
Io. (e, é, n) and Iy, (e, ¢, n) , replacing the derivatives and also the integrals
which differ from Iy. and Iy, , we shall obtain a linear homogeneous system
for the later two integrals To. (e, é, r) and Ig, (e, é, n) . For our purposes, it is
enough to use not the full solution, but only the proportionality relation
between Ip. and g, :

(17)  Tode, &, n) =Dgle, &, m)lo.le, &, 1),

where Dy.(e, é, n) is a polynomial in e, ¢ and #. It should be stressed that in
the above linear rclation there is not a free term, which follows from the
homogeneity of the above mentioned sysicm. Returning to the expressions
Iy, Ii, I and Iy, which also do not include free termg (in the sense, terms in
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which absent integrals of the type (5) - (7) ), and replacing consecutively the
results for Ip. , Iy , I , I, , we shall obtain proportionality relations of the
Same type as (17). There is, however, a gap in our solution for the system of
integrals (5) - (7), because we have not found yet any expression for the
integral I3 . We can differentiate Iz(e, €, n) with respect to e or é. In the later
case the result is a differential equation for I, which takes 4 simple form :

(18) 0L+ (e-&)" Lde=(n+ 1)e- ' s+ (e-6) ' L] - nte - &7,

This equation enables us to find Li(e, ¢, n) if the expression for I (e, ¢, n) is
already known. i may be checked that a proportionality relation Iz{e, ¢, n) =
Dsle, ¢, n)ip.(e, ¢, i}, where Ds contains a polynomial part in e, ¢, n, and,
additionally, exponential function of ¢, ¢ and n, may serve as a general
solution of the equation (18), Summarising all the results, we sce that 6 of
the integrals (5) - (7) are expressible through the seventh jone:

(19 Ile, é,n)= Dile, é, m)lp (e, é,n), k= 0-,0,1,....,4.

Dyle, €, n} are already known functions, containing polynomials in e, é n
and exponential functions depending also on e, ¢ and n. The dynamical
equation (8} then becomes into the form:

20 { 2[Au (e, &, n)é + By, {e, &, 1)IDi{e, &, n)Dile, é, n) } (Ins (e, é, n.)}2

H

where the sum is over i and k (L,k=0-,0+0,1,...,4), and i is less or
equal to k. Taking into account that the integral Iy (e, e, n)[k,_éld is always
strictly positive, it is possible to cancel out ( Ig,)? and to rewrite (20) as:

@l [YAwle, &, m) e+ YBile, ¢, ) =0, i, k=0-040,1, ... 4,

where the both sums arc again over i and k, and also i is|less or equal to k.
Here Ay and By are polynomials or exponential functions in e, ¢ and #.
Numerical integration of the equation (21) does not already require any
computation of integrals (which include also the unknown solution e{u) and
its derivative é(u)). So, the situation concerning solution of equation (1) is
improved at Icast in order to simplify the computational procedure.
Possibly, equation (21) admits applicability of more stable algorithms in
order to find more accurate solution of the problem. Is it possible to obtain

21



an analytical solution to the simplified equation (21) is still an open
question, which is under investigation.
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EJHO Bb3MOXKHO OIIPOCTSIBAHE HA JIMHAMHWYHOTO
YPABHEHUME, 3ATABAIIIO EBOJIIOLUSTA HA
EJAIITHYHHUTE AKPEITMUOHHM JIUCKOBE

Humumop Jumumpos

Peszwme

lloxazano e, 4e opy OONYCKAHETO HA 3aKOH 34 BUCKO3MTETa O BH/a
7 = P2 ", uHTerpanure, BKNIOYEHH B YPaBHOHUETO KOETO OIWMCBA
AuHamMKara Ha JucKa, morat )@ 6baaT 3aMecTeHH ¢ MORMHOMH U
EKCTIOLCHUMANIN QYHKIMH OT EKCLCHTPUIINTETA €, HErOBATA IIPOU3BOAHA &
= 0e/d(in p) ciipsMo QOKaNHNS DPAMCTLD p M OT CTENCHRUS MoKa3aTell .
Tasn  Tpancdopmauus e 1onesHa NpH YUCIACHOTO pellaBaie Ha
AMHEAMUYHOTO JIMQEPEHLANHO YpaBHEHUE OT BTOPH pef,  3al0TC TA
FoMycka Jsia ce wm30erne YHCICHOTO OUCHSBAHE HA WHTEIPAIHTE U
CBEHTYaNHO ofyciass mo-cTabWiHa HM3UHCIKTENHA npoluemypa. Hamero
pasrieKaaHe Ha 3a7a4aTa & oTpalueHo JI0 Cnydas, KOTaTo CTOMIIOCTHTE Ha
[IapaMeThpa 7 HE ¢a LEeJIM YUCIa.
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